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Abstract

The automation of rotorcraft low-altitude flight presents challenging problems in control,

computer vision and image understanding. A critical element in this problem is the ability

to detect and locate obstacles, using on-board sensors, and modify the nominal trajectory.

This requirement is also necessary for the safe landing of an autonomous lander on Mars.

This paper examines some of the issues in the location of objects using a sequence of images

from a passive sensor, and describes a Kalman filter approach to estimate range to obstacles.

The Kalman filter is also used to track features in the images leading to a significant reduction

of search effort in the feature extraction step of the algorithm. The method can compute

range for both straight line and curvilinear motion of the sensor. An experiment is designed

in the laboratory to acquire a sequence of images along with the sensor motion parameters

under conditions similar to helicopter flight. The paper presents range estimation results

using this imagery.

1 Introduction

Rotorcraft operating in high-threat environment fly close to the earth's surface to utilize

surrounding terrain, vegetation, or man-made objects to minimize the risk of being detected

by the enemy. Increasing levels of concealment are achieved by adopting different tactics

during low-altitude flight. The piloting of the rotorcraft is, at best, a very demanding task

and the pilot will need help from on-board automation tools in order to devote more time to

mission-related activities. The development of an automation tool, which has the potential

to detect obstacles in the rotorcraft flight path, warn the crew, and interact with the guid-

ance system to avoid detected obstacles, presents challenging problems.

The planning of rotorcraft low-altitude missions can be divided into far-field planning

and near-field planning [1]. Far-field planning involves the selection of goals and a nominal

trajectory between the goals. Far-field planning is based on a priori information and requires



a detailed mapof the local terrain. However, the database for even the best surveyed land-

scape will not have adequate resolution to indicate objects such as trees, buildings, wires

and transmission towers. This information has to be acquired using an on-board sensor

and integrated into the navigation/guidance system to modify the nominal trajectory of the

rotorcraft. Because vision alone will not be adequate for detecting small obstacles such as

wires, it is expected that the system will include an active sensor whose search can be di-

rected to complement the vision system while minimizing the risk of detection [2]. Initially,

passive imaging sensors such as forward looking infrared (FLIR) and low-light-level-television

(LLLTV) will be considered in order to assess the operational potential of passive methods.

The recovery of depth using electro-optical sensors, referred to as passive ranging, is

based on triangulation and requires two images of the outside world from two different imag-

ing conditions. In stereo methods, two or more cameras located at different positions are

used to obtain images of the outside world. In motion methods, the same camera is moved

from one position to another to capture two or more images of the outside world. Passive

ranging has been the subject of considerable study in computer vision [3, 4]. Several papers

have described the use of a sequence of images to determine the orientation and position of a

rigid body [5], recover both vehicle motion and location of surrounding objects [6], compute

range by matching vertices of man-made objects [7], and estimate range for linear motions

of the vehicle [8, 9]. Krotkov [10] has used focusing to compute the distance to objects lying

in the range 1 to 3 meters. Recently, Ma and Olsen [11] have proposed the acquisition of a

monocular image sequence by changing the focal length of the camera and using the resulting

images for range computation.

The passive ranging methods described earlier have evolved from the needs of the Au-

tonomous Land Vehicle (ALV) and other ground-based robotic applications. Road following

is the key guidance function in the ALV whereas the ability to maneuver around obstacles

is the challenge for guidance in low altitude flight. The rotorcraft flight at low-altitude has

several distinct characteristics: (i) the nature of the scenarios encountered outdoors makes

methods dependent on model based vision such as matching verticies of man-made objects

not applicable, (ii) due to the curvilinear motion of the rotorcrMt, a large class of passive

ranging algorithms designed for linear flight are not directly applicable, (iii) the objects of

interest during a rotorcraft flight may vary from 50 to 1000 feet resulting in a large variation

in the optical flow in the image, and (iv) the availability of the sensor motion parameters

from an inertial navigation system. The approach used in this analysis is geared to the re-

quirements of low altitude rotorcraft flight and differs from general motion analysis methods

in significant ways. The distinguishing features of our approach are: (i) we do not attempt

to estimate the rotorcraft's motion from the images, (ii)the algorithms are designed to be

recursive, (iii) the algorithms can handle curvilinear rotorcraft motion, (iv) feature tracking

and range estimation are done incrementally to reduce the search space as well as to discard

false matches, and (v) a Kalman filter formulation allows the use of several optical sensors

and it provides for a natural way of integrating stereo and motion methods. The rotorcraft

parameters (angular rate, translational velocity, position and attitude) are assumed to be



computedusing an on-board inertial navigation system. Given a sequence of images, using

image-object differential equations, a Kalman filter [12] can be used to estimate both the

relative coordinates and the earth coordinates of objects on the ground. The Kalman filter

can also be used in a predictive mode to track features in the images, leading to a significant

reduction of search effort in the feature extraction step of the algorithm. The performance

of three different Kalman filters for different rotorcraft maneuvers were examined in [12].

This previous study did not, however, include the processing of real images. This paper de-

scribes the computation of the optical flow and uses the resulting optical flow in an Extended

Kalman Filter (EKF) to estimate range. We present range estimation results for both linear

and curvilinear motions of the camera. The experience gained from the application of this

algorithm to real images is very valuable and it is a necessary step before proceeding to the

estimation of range during low-altitude curvilinear flight using an Extended Kalman Filter

(EKF).

The paper is organized as follows: Section 2 describes the relation between the image,

the rotorcraft and objects of interest under full curvilinear motion. Section 3 describes our

approach to the estimation of optical flow and the resulting image track. Section 4 describes

the recursive range estimation algorithm and Section 5 considers the performance of this

algorithm using image data acquired in a laboratory setting. Finally, Section 6 provides a

summary, conclusions and ideas for future work.

2 Passive Ranging

Passive ranging is the ability to estimate distances to various objects close to the flight path

of the helicopter using passive sensing by electro-optical cameras. This section will describe

the basic relations between the two-dimensional (2D) sensor image variables (displacement

and velocity) to the three-dimensional (3D) terrain geometry (i.e. points, lines and other

features) and sensor motion parameters (i.e. position, attitude, translational and rotational

velocity). These relations provide the dynamic models for the estimation of range. For

simplicity, the camera is assumed to be fixed at the center of gravity of the rotorcraft with

its optical axis oriented along the rotorcraft's longitudinal body axis. Figure 1 shows the

viewing geometry of the camera. In actual practice, the camera is mounted at a convenient

location away from the center of gravity of the rotorcraft. If necessary, the camera is allowed

variable orientation with respect to the body of the rotorcraft. This flexibility is provided

in our implementation of the passive ranging algorithm.

Consider an earth-fixed, north-east-down, coordinate system. Let rh -- (Xh,Yh, Zh) T

and r -- (x, y, z) T be the earth coordinates of the rotorcraft and a point O on the ground

respectively. The rotorcraft moves with respect to the earth at a translational velocity

v - (vx, r.

The orthonormal coordinate transformation from the earth axes to body axes is denoted

by the 3x3 matrix T which depends on the rotorcraft attitude. Let To be the corresponding
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Figure 1: Viewing geometry of the imaging sensor

transformation matrix from body to sensor-axis system.

The relative position, p, of any point 0 with respect to the rotorcraft can be written as

? = r - rh (1)

The rate of change of this vector as viewed from the moving rotorcraft can be determined

by the Coriolis equation relating rate of change of a vector as viewed from a earth-fixed

coordinate frame to that viewed from a moving frame. The standard vector form of the

Coriolis equation [13] is

i_s,_cd = _,,,o,,_,_ + _ X p (2)

Let Pb =-_ [Xb, Yb, Zb]T be the vector between the rotorcraft and point O expressed in body-

coordinates. Similarly, Vb = [Vb=, Vbv, _z] r and Wb = [Wb=,W_,Wbz] T represent the trans-

lational and rotational velocity of the rotorcraft in body axes. Let p° = [x°,y,,z°] T,

V, = IV,=, V,_, V,I T and w, = [wo=,w,y,w,] r be the corresponding quantities in the sensor-

axes system.

Using equations (1) and (2) and matrices T and T°, we can write the relation

j6,= -U_o x p, - (3)
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Let the image plane be perpendicular to the optical axis. Then, using similar triangles

U= fx./Z,
v = fyo/z, (4)

where f is the focal length of the sensor. As the rotorcraft moves, the image of the object

O moves in the image plane. Differentiating u and v with respect to time, we have

i, = +
,:,= f(-y.s, + (5)

Substituting equation (3) into (5) and (4) leads to the result

ti = fit + ti,

6 = t)t+6, (6)

where

tit --

tit --

t)r "--

(-Vs= + _=u/f)f /z,

(-V_u + V_=v/f)f /z.

cosxuv/f -wsv(u2/f 2 + l)f +wszv

wo=(v2/f 2 -I- l)f --wo_uv/f -w.,u

(7)

The velocity (ti, _)) associated with each point in an image is referred to as optical flow [14]

where (tit, _)t) denotes the translational component of the optical flow, and (_,, 6,) the ro-

tational component of the optical flow. The rotational component of the optical flow is a

function of the image position only and provides no information about the location of object

O. Thus, given the six motion parameters of the sensor (V,,w,), by computing the optical

flow (ti, 6), the translational component of the flow at a point can be used to estimate the

distance of the point O along the optical axis (0, 0, z,). For a rotorcraft flying in a straight

line, the optical flow will be zero at a point (V,=/V,,, V,v/V,z ) in the image plane. This point

(f-, fv), referred to as the focus-of-expansion (FOE), corresponds to the intersection of V,z

and the image plane and it plays an important role in optical flow computations. We do

not use the direct approach suggested by equation (6) in our computation of z,; instead, the

range is computed using the more robust recursive estimation procedure outlined in Section

4.

Given a sequence of measurements u(k), v(k); k = 1, 2, .... N, using image-object dif-

ferential equations (3), we estimate both the relative coordinates p(k) and the earth co-

ordinates r of the corresponding object O on the ground. The range estimation con-

sists of two major parts: (a) computation of optical flow by extracting of measurements

(u(k), v(k)) from the image and (b) estimation of range given the sequence of measurements

u(k), v(k); k = 1,2, .... N. The next section will consider the computation of the optical flow.



3 Computation of Optical Flow

The computation of optical flow requires the determination of the displacement of image

points over a sequence of images. The main difficulty in the computation is due to the as-

sumption that an object in the terrain space corresponds to a unique point in the image. In

an actual image, an object on the ground is more likely to be a region in the image. Another

complication in the computation of the optical flow, referred to as the correspondence prob-

lem [15], results from the ambiguity in identifying features in two images that are projections

of the same entity in the 3-dimensional world.

There are two approaches to the computation of optical flow: (a) field-based techniques

and (b) feature-based techniques. The field-based techniques assume a continuous variation

of image intensity as a function of position and time. This approach was introduced by

Horn [16, 17] and provides a dense map of the optical flow. However, the computational

experience with this approach is limited to simple scenes and available algorithms based on

this method are very susceptible to noise [18]. Recently, several new field-based methods

have been reported in the literature [19, 20, 21, 22]. However, in this paper, we will restrict

our attention to feature-based computation of optical flow.

Feature-based techniques [23] make use of features in an image to measure optical flow.

Features in an image can be points, lines, contours, regions, or any other geometrical defini-

tion that corresponds to a distinguishable part of an object. The complexity of the algorithm

depends on the definition of feature and the criteria used for matching. In general, robust-

ness and computational load increase with the amount of modeling involved in the definition

of the feature. The matching technique used in this paper is a modified version of area-

based matching and is designed to overcome some of the common limitations associated

with area-based matching [24]. The selection of areas for matching, based on regions of high

pixel variance, eliminates featureless regions in the image. The use of normalized correla-

tion makes matching independent of brightness changes from one image to the next. The

knowledge of (V,,w,) and the estimated value of range is used to limit the search area used

for matching. The choice of window size affects the performance of matching algorithms. A

large window can provide more uniqueness in matching. However, a large window may also

cover more than one object and lead to erroneous results near occlusion boundaries. Some

authors have addressed this problem by using several window sizes in a hierarchy [25]. Our

approach is to use a fixed size window and to discard inconsistent features (i.e. features

which do not behave as predicted) during recursive range estimation.

The algorithm used for computing optical flow between two successive image frames Ik

and Ik+l consists of the following steps:

1. The kth image frame Ik(u, v) is a discrete 2D function where the value of the function

at each point (u, v) represents a shade of grey. In our implementation, the grey scale

is represented by 8 bits and the image plane is 512 x 512 pixels.

2. Each image Ik is divided into regions of np x np pixels. A feature, Sp, is defined to be
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a region which has a high variance. For our tests, we used regions of 9 × 9 and 11 × 11

pixels. The variance threshold was selected as 5 percentage variation in intensity.

3. The initial image is partitioned into np × n_ regions from which features are identified.

Thereafter, at each subsequent frame, features from the previous frame are propagated

to identify corresponding features in the current frame, possibly shifted in location. The

evolution of features in a small segment of the image is shown in Figure 2. In addition,

the current image is again partitioned into np × np regions to identify newly formed

features. Figure 3 illustrates the procedure for adding new features. A region of high

variance is picked as a new feature only if a major portion of it is not already covered

by an old feature. This is done to keep the number of features to a minimum and

is reasonable since not much additional information is gained by tracking completely

overlapping features. A 50 percentage threshold is used in the tests. RA, RB, and

RC are regions of high variance which qualify as features. However, only RB and RC

are chosen as new features. At each frame the total number of features is equal to the

features corresponding to the previous frame plus the new features. The total number

of features varies from frame to frame and is bounded by the number of np × np regions

in the image.



4. The feature in image Ik is matched to its corresponding feature in the image Ik+l using

the normalized correlation coefficient. The normalized correlation , % between two

np x np regions A(i,j) and B(i,j) is defined by the relation:

where

np _I.

I_o = [Y_ _ A(i,j)]

gb = [_-_ _ B(i,j)]
iffil j=l

np np

U.b = [Y_ _ A(i,j)B(i,j)]

_o = [_ _ A2(i,J)]

i=l j--1

(9)

(10)

A value of 1 signifies a perfect match between the regions.

5. A feature in image lk+l corresponding to a given feature Sp is determined by searching

the image Ik+l for the region which has the highest normalized correlation with Sp.

Let u(k + 1), v(k + 1) be the coordinates of the center of this region and let u(k), v(k)

be the corresponding quantities for Sp. [u(k + 1) - u(k),v(k + 1) - v(k)] is a measure

of the optical flow or disparity associated with Sp.

6. The search area in image Ik+x for finding correspondence to Sp is limited to a narrow

elliptic envelope, as shown in Figure 4, to reduce the amount of computation. The

envelope depends on the sensor characteristics, rotorcraft motion, and the error covari-

ante of the range estimates. As will be described in the next section, the predicted

location of the feature Sp, [fip(k + 1),fip(k + 1)], is provided by the recursive range

estimation algorithm. [fip(k + 1), fip(k + 1)] defines the center of the ellipse. The error

covariance associated with _,(k + 1) is used to define the major axis of the ellipse.

However, the search area is always large enough to accommodate a 30 percent error

in i,(k + 1). The search along the major axis accounts for errors only in i,(k + 1).

The search area is expanded to a narrow ellipse to account for errors in the location

of u(k), v(k). The width of the search area is a compromise between the amount of

computation for the search and the likelihood of missing a correct match. The minor

axis of the ellipse is chosen to be 20 percent of the major axis for the results reported

in this paper.



20% of major axes
1.3 [Up(k+l ),vl:_k+ 1)1

0.7 [Up(k+1),vl_k+ 1)] [up(k+1),vF(k+l)]

Figure 4: Search area for feature matching

7. The search step results in the location of [u(k + 1), v(k + 1)] to pixel accuracy. Let (I1,

J1) be the corresponding pixel location. We assume that T/c has a qudratic variation

in the 8-pixel neighborhood of (I1, J1) and achieve sub-pixel accuracy by finding the

maximum of T/c in this nighborhood.

8. The result of the previous step is a sequence of disparity vectors or image track for

each feature Sp.

We have used a search procedure to find the maximum of the normalized corelation co-

efficient. The search procedure can be replaced by a number of techniques which optimize a

function of two variables. The classical Newton method is simple and well known but subject

to an array of difficulties in practice affecting reliability. Several variations of the Newton's

method are available to overcome these difficulties[26]. In general, modified Newton's meth-

ods provide a faster solution than the search procedure. However, this improvement may

not be significant for the maximization of the normalized coefficient as a function of two

variables.

The next section will describe how the image track can be used recursively to estimate

range corresponding to every feature in the image.

4 Recursive Range Estimation

Recently, recursive estimation and Kalman filters have been used by several authors to ad-

dress problems in computer vision. Broida and Chellappa [27] have applied an EKF to

estimate translational and rotational motion of a 2-dimensional rigid body. Wu [5] describes

an EKF to estimate the positions and orientations of a rigid body by using a sequence of

9



images. Matthies [8] described a Kalman filter-based algorithm to estimate range using a

sequence of images. However, this algorithm is limited to linear motions of the camera. The

EKF has also been used to estimate the calibration parameters of the camera [28]. Wun-

sche [29] describes a Kalman filter-based method for controlling a mobile robot by tracking

three features. Three different Kalman filters for recursive range estimation were presented

in [12] and their performance was evaluated using simulated image tracks. This approach

was applied to a sequence of images for linear camera motion in [30]. Here, we present

the algorithms and results for both linear and curvilinear motions of the sensor. The range

estimation algorithm is described for one feature to keep the notation simple However, the

same analysis holds for all fixed features on the ground.

The object location estimation problem may be formulated as follows. Let a point object

O have earth coordinates r = (x, y, z) T. The image point corresponding to this object point

has coordinates (u, v) r, where u and v are given by equation (4). The actual image point
• • • r • •

location will be &fferent from the true value _u, v) due to noise m the sensor and errors
introduced by the optical flow. Let (u_,v_) be the measured coordinates of the image

point, such that

 m(t) = u(t) +..(t)
v,,,(t) = v(t) + nv(t) (11)

where n. and nv represent "pixel" noise of the imaging system, nu and nv are assumed to be

independent scalar white noise processes with standard deviations a. and a_, respectively.

In vector notation, measured or actual image point coordinates can be represented as

where

and

z(t) = h(t) + (12)

[a,, _ 0 ] (13)R-coy(G)= 0

The measured image point coordinates will move in the image plane as the rotorcraft flies

a given trajectory. Given, estimates of rotorcraft position and velocity (translational and

rotational) along it's trajectory, image point measurements from successive image frames

may be used to build a Kalman filter for recursively estimating the object point coordinates

in earth axes (r) and in sensor axes (p,). Because the measurements, Z, are nonlinear

functions of the object point coordinates, r or pj, an extended Kalman filter must be used.

The Kalman filters investigated in this paper have a linear continuous state model of the

form
2 = F(t)X(t) + G(t)U(t) + (14)

10



where X is the state vector U is the control input, (x(t) is a continuous white noise with

covariance Q_ (representing modeling uncertainty), and F(t) and G(I) are time-varying ma-

trices. Using a sampling interval of AT seconds, equation (14) can be replaced by the discrete
form

X(k + 1) = ¢(k)X(k) + F(k)U(k) + ¢x(k) (15)

where k =_-i.AT, k + 1 = (i + 1)AT, i = 1, 2, 3..., ¢(k) is the state transition matrix and

F(k) is the input distribution matrix. The process noise _(k) is used to model uncertainties

in the knowledge of V_ and [w,]. _x(k) is a discrete white noise sequence with covariance

Q = Qc/AT. The measurements Z(t) are assumed to be available every AT,,, seconds where

AT,_ = MAT, M being a constant positive integer. The measurements Z(t) are non-linearly

related to the state through the vector function h(X(t)) and can be linearized to give the

measurement equation. Thus, whenever i is an integral multiple of M , we have

Z(k) = h[X(k)] + ¢,(k) (16)

Given the state equations (15) and the image point measurements Z(k) of equation (16) the

state estimate )((k) and it's error covariance matrix P can be computed recursively using

the Kalman filter [31].

The Kalman filter consists of two parts:

1. Measurement Update: The measurement update is done whenever a new measurement

is available, i.e., i is an integral multiple of M. Prior to processing a new measurement

Z(k), we have the estimated value of the state ._ and the covariances P(k), Q(k) and

R(k). The new measurement improves our estimate of the state and it's covariance.

The updated values are

)((k) = )((k) + g(k)[Z(k)- h(X(k))]

P(k) = [I- g(k)g(k)]P(k)

where the matrix of partial derivatives

H(k) =Oh(X)/OX

and the Kalman filter gain K(k) is computed using the equation

g(k) = P(k)HT(k)[g(k)P(k)gT(k) + R(k)] -1

When i is not a multiple of M,

(17)

(18)

(19)

X(k) = )((k) (20)

P(k) = P(k) (21)

2. Time Update: This part of the filter accounts for the system dynamics and propa-

gates the state and its covariance matrix until the next measurement is made. The

propagated values are:

X(k + 1) = _(k)X(k) + r(k)U(k)

P(k + 1) = ¢(k)P(k)_(k) T + r(k)Q(k)r(k) r (22)

11



The actual implementationof the Kalman Filter is done by updating the measurements

one at a time. This results in a Kalman filter gain different from K(k). However, the final

3( and 15 at the end of the measurement update is the same as before. Due to the excellent

numerical properties of the factorized form [32], the error covariance propagation is done by

decomposing the state covariance P in the form

P(k) = U(k)D(k)uT(k) (23)

where U is an upper triangular matrix and D is a diagonal matrix.

Three different Kalman filter formulations for object point location are discussed in [12].

They are the result of three different representations for the state vector in equations (14)

and (15). Here, we choose the relative coordinates of the object point O with respect to the

rotorcraft in sensor axes as the state vector. Thus,

X -- p, - (z,, v,, z,) r (24)

From equation (3),

= -[_.lX- 9. (25)

Equation (25) defines a time-varying linear system as in equation (14) with F(t) = -[dJ,],

G(t) = I, U(t) = -I7o and G = 0. Note that _o and I7, are the estimated rotorcraft angular

and translational velocity vectors in sensor coordinates provided by the on-board inertial

navigation system.

The conversion of the continuous time-varying state model in equation (14) to the dis-

crete form (15) is done assuming F(t), G(t) and U(t) to be constant over a small interval

of time AT. This assumption implies that the rotorcraft linear and angular velocity is con-

stant during the time interval AT. This assumption can be satisfied by updating the state

equations at a higher rate as is the case in most airborne inertial navigation systems. The

conversion from the continuous to discrete form is usually done using numerical techniques

[33]. Since F is a 3 x 3 matrix, by working in the frequency domain we can derive the discrete

system equations analytically. This expression gives a more accurate value for q_(t) than the

numerical approximation resulting from a Taylor series expansion.

Under these conditions, Appendix shows that

'Iql(k)
,i,(k)= ,I,_,(k)

¢'3_(k)

,i,_(k) ¢,_(k) q
,I,=(k) ¢_,(k) J,i,=(k) ,I,_(k)

(26)

and

r,,(k) r,2(k) r,3(k) ]r(k)= r2,(k) r=(k) r3,(_)
F31(k) r3,(_) r.(k)

(27)

12
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Figure 5: Interaction between computation of optical flow and range estimation

where cbij and Fij are defined by equations (41)-(48). Using (16), we can write

z(k) = nix(k)] + G(k) (2s)

where

The matrix

h[X(k)] = [h,,h2lT= [fx,/z,,fy,/zo] T

[ ah]/Oz. Oh,/Ouo Ohl/Ozo ]H[X(k)]= Oh2/Ox, ah21aUo OhUaz°

By taking the partial derivatives, the expression for H reduces to

(29)

(30)

1/Zo o -Zo/Z2,]H[X(k)] = H(p°)= f 0 1/z, -Uolz_, ,,.=,_.(,,_,)
(31)

Equations (25) and (31) can be used in the extended Kalman filter to recursively estimate
the state X =/_o = [_o, _o, $o]T and its covariance P°. In earth coordinates,/_ and ÷ can be

computed using the equation

= TTTT_o

Similarly, P = TTpbT where Pb = TTpoT°.

The interaction between optical flow calculations and recursive range estimation is shown

in Figure 5. Assume that we want to process the image lk to improve the range estimate

corresponding to a feature Sp(k- 1) from image h-x. The output of the Kalman filter based

on measurements [u(k- 1),v(k- 1)] provide the estimates )((k) = [_c°(k),_°(k),£,°(k)] T.

Based on the state estimate, we can predict the location of Sp(k) in image k to be

%(k)= f&,/_,
¢Jp(k)= fTjo/P,o (32)

13



The values[fir(k), _(k)] areprovidedto the optical flow algorithm to find the location of the

corresponding feature at [u(k), v(k)]. Generally feature matching algorithms would require

the derotation of the image Ik+l to account for the rotational motion of the vehicle before

matching can be done between features in image Ik and image lk+l. However, by definition,

the EKF accounts for total helicopter motion and due to its continuing update no derotation

is necessary with the matching algorithm discussed here.

The state error covariance matrix P provides a measure of the accuracy of the estimate.

The magnitude of P(k) decreases monotonically as new measurements [u(k), v(k)] are pro-

vided to the Kalman filter by the optical flow calculations. The amount of decrease in P(k)

over a finite number of image sequences, N, depends on the measurement noise R(k) and N.

Let Tc be the amount of time required for the estimates to converge to a satisfactory value

and let AT,. be the interval between measurements. We have Tc = N.AT,.. Increasing AT,.

to AT_ leads to an increase in the amount of change in [u(k), v(k)], and assuming the same

error in the location of [u(k -k 1), v(k + 1)], results in a higher signal to noise ratio. We may

need N1 _< N images to reach the same level of convergence. The corresponding value of

Tc is T1 = N1.AT1. Similarly, decreasing AT,. to AT2 leads to a decrease in the amount of

change in [u( k ), v( k )] , and assuming the same error in the location of [u(k + 1),v(k + 1)],

results in a lower signal to noise ratio. We may need N2 _> N images to reach the same level

of convergence. The corresponding value of T_ is T2 = N2.AT2. Tc is a nonlinear function

of AT,. and has a minimum for a specific value of AT,. . The variation of T¢ for simulated

images shows a large decrease in T_ with decreasing AT,. upto a certain value, followed by a

small decrease in T_ with decreasing AT,.[12]. For small values of AT,., the number of sam-

ples required before the estimates converge is very large simply because of the poor geometry

associated with each successive pairs of images. For large values of AT,. the time required

for convergence may be prohibitive due to ATm itself. The lower bound on AT,. depends

on the amount of time required for low-level image processing. The choice of AT,, depends

on the change in [u(k), v(k)] in successive images. As can be seen from equations (5) and

(6), optical flow depends on the rotorcraft motion relative to the object. Larger values of

AT,. are needed for low rotorcraft speed in order to maintain the same signal to noise ratio

in measurements. For the same vehicle maneuver, range estimates to objects far away from

the FOE will converge faster than objects closer to the FOE. This suggests a strategy where

the features are tracked at a high sampling rate as dictated by the minimum value of AT,";

but, designing the Kalman filter to employ a variable measurement update interval which

depends on the magnitude of the displacement of the feature within the image. We are in

the process of designing a event driven Kalman filter where a new measurement is accepted

for update only if it passes a signal to noise threshold. This would result in a uniform signal

to noise ratio over a large portion of the FOV. Our evaluation will focus on three different

values for AT,..
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5 Performance Evaluation

The evaluation of algorithm performance has not received a lot of attention in computer

vision reasearch. However, it is essential that algorithms be tested extensively before the

technology can be transferred to applications. One reason for the lack of detailed evaluation

is the absence of standard data sets of images. Recently, efforts are being made to collect a

standard data set of images for testing algorithms. Another difficulty in the evaluation of

algorithms is the need for an evaluation criterion. Visualization of the enormous amounts

of information poses another challenge in the debt:gging and display of results. These is-

sues have been recognized by researchers in computer vision and are the subject of several

discussions [34, 35, 36]. We will describe the steps followed in the evaluation of the range

estimation algorithm and relate our experience to problems and issues in the evaluation of

computer vision algorithms.

The evaluation of rotorcraft obstacle detection algorithms needs to be done using both

laboratory image sequences and imagery data acquired during rotorcraft flight. NASA Ames

has developed a set of flight data [37]. In the laboratory an experiment has been designed

to acquire a sequence of images by mounting a camera on a 3 degree-of-freedom motion

table. The camera position and orientation is controlled by a computer to achieve desired

curvilinear camera motion. The details about the laboratory setup can be found in [38].

The camera can be moved at different speeds. Figure 6 shows the laboratory setup and the

location of various objects. A sequence of 80 images was collected by moving the camera

along a straight line during the segment AB followed by a cosine curve during the segment

BC. Figure 7 shows the details of the camera path. The camera is stationary when the image

is captured and is moved to the next position before taking the next image. The camera

moves a distance of 0.125in along the direction AB between steps. The optical axis of the

camera is tangential to the path ABC. The camera motion parameters were computed from

the path ABC and provided as inputs to equation (25). This experiment can be scaled to

simulate a helicopter flying at 20 knots where the objects in the FOV vary from 50m to

500m and the images are being processed for range computation every 0.25 seconds.

The position of the camera when the 36th, 60th, and 76th image is captured is referred

to as camera position 1, 2, and 3 respectively in subsequent discussion. These positions are

indicated in Figure 7. Figures 8, 9, 10 and 11 show the zeroth, the 36th, the 60th and the

76th image in the sequence of 80 images. Five different regions are highlighted in the im-

ages. In Figure 9, these correspond to the edge of a bracket at 15.2 inches from the camera,

a region which includes the FOE on a soda can about 22.7 inches from the camera, a pencil

to the right of FOE and located at about 19.5 inches, another pencil to the left of FOE and

located at about 24.5 inches, and a tape located at 56 inches from the camera. These regions

were selected to examine the behavior of the algorithms at different ranges and at different

angles with respect to the direction of motion of the sensor.

It is difficult to state a single measure for the evaluation of range estimation algorithms.
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Figure 6: Laboratory setup and location of objects
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Figure 7: Details of camera path
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Figure 8: Zeroth image Figure 9: 36th image

Figure 10: 60th image Figure 11: 76th image
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If the true terrain data is available, an obvious measure is the accuracy of the estimate at

each pixd location. The usefulness of the range information depends on the accuracy at

different locations in the field-of-view (FOV) as well as regions in the image where range

measurements are available. The desired accuracy and the critical regions in the FOV will

vary with the obstacle avoidance algorithm and its implementation. For regions in the FOV

where no true terrain data is available, the covariance of the range estimate can be used as a

measure of the quality of the estimate. The accuracy of Kalman filter-based range estimates

depends on the error in individual measurements at each frame and the number of frames

used to estimate the range. The convergence of a Kalman filter depends on several different

factors and we will explore the relationship between accuracy, time interval between images

and the number of images.

We adopted the following procedure in the evaluation of the algorithms:

1. Compute range to all tracked features in the image and store their range and covariance

as a function of the identification number of the feature and image sequence.

. The range estimates at various points in the FOV are color-coded and superimposed

on the original image. Since different features corresponding to the same object should

have approximately the same range, the color-coding gives a global picture of the range

algorithm performance.

3. Manually select regions in the image which correspond to the same object and for
which truth data is available

4. Compute the mean and standard deviation of the estimated range corresponding to all

the features in a given region

5. Examine the performance of the algorithm as a function of sampling time and the

number of samples used to estimate the range.

Next, we present range estimation results using the laboratory data following the pro-

cedure outlined above. Features were detected in these images using algorithms described in

section 3. The number of features in the image sequence varied from 600 to 1000. A physical

object such as a pencil in the FOV gives rise to several features and their associated image

tracks. Figure 12 shows the image tracks generated by four features corresponding to differ-

ent parts of the right pencil. The feature tracks are of varying length since new features are

created and some old features may either move out of the FOV or cannot be tracked when

a new image is acquired for processing. Table 1 shows the identification number associated

with the some of the features corresponding to the right pencil, the respective image plane

coordinates and the axial component of range estimate (,_) at the 80th image sequence. The

identification number is used as a link to associate all the information and display relating

to a single feature. Figure 13 shows the variations in the axial component (z,) of the edge

corresponding to the right pencil as a function of the number of iterations. The object

position converges to the true value as the number of iterations increase. All the features

corresponding to the same object will exhibit similar convergence and the plot can be used
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Figure 12: Image tracks generated by 4 features corresponding to the right pencil

to identify feature tracks which do not correspond to a real object on the ground. Figure 14

shows a histogram of the estimated range using features corresponding to the right pencil.

This histogram was computed at the end of the 76th image and has 98 features. Recall

that the camera is moving along a straight line when the first 40 images were acquired and

the camera has both translational and rotational velocity during the time when the next

40 images are acquired. The time interval between images is fixed. This image sequence

was processed in three different ways. Data set F uses all the 80 images. Data set H uses

alternate images from data set F and has 40 images. Data set Q is a subset of data set H

and is made up of 20 alternate images. Figure 15 illustrates the relationship between the

three data sets. The sensor motion along the line AB between two images in data sets F, H,

and Q is 0.125in, 0.25in, and 0.5in respectively. The three data sets provide us with three

different measurement update intervals_ slow, moderate and fast_ in the estimation of range.

We examine the range estimates using datasets F, H and Q respectively in the region

corresponding to the Bracket. Figure 16.a, 16.b and 16.c show range estimates as a function

of frame number using datasets F, H and Q respectively. It should be recalled that the

number of range updates is equal to frame number/M where M takes the values 1, 2 and

4 for the datasets F, H and Q respectively. The dotted lines in the figure show the 5%

estimation error boundaries. The estimation error converges to within 5% of the true value

faster in dataset F. This is due to the fact that the disparity between images is significant

in the dataset F in the region corresponding to the Bracket. At frame number 20, the range

has been updated 20, 10 and 5 times in Figure 16.a, 16.b and 16.c respectively. Figure 17.a,

17.b and 17.c shows similar results for the Right Pencil. The estimation error performance

of the Right Pencil is similar to the Bracket. Figures 18.a, 18.b and 18.c show the range

estimation results in the re#on corresponding to the can. The can represents a region in

the image very close to the FOE. The range estimation results are not very reliable in this

region. However, as can be seen from Figure 18.c the range estimation errors are smaller
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Table 1:

id u

143

1357

1643

1931

2064

2110

2162

2165

2280

2872

3371

3419

3535

3637

3788

Identification number and range

(pixels) v (pixels)

465.77

462.59

448.16

445.84

449.91

444.65

445.89

459.54

448.78

456.10

457.67

456.46

444.30

456.21

444.42

274.98

280.16

278.32

279.88

263.81

267.51

264.24

279.21

276.31

262.25

271.29

271.13

271.10

270.35

268.47

range (in.)

13.43

12.54

13.45

12.50

13.36

13.72

12.85

13.09

13.85

17.26

14.82

15.78

15.09

14.69

15.51
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Figure 15: Relationship between data sets F, H, and Q
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for datasetQ than the other two sets. Figure 19 shows the range estimation results in the

region corresponding to the Left Pencil. The range estimation results agree well with the

true values. The estimation errors are smallest for the moderate update interval.

D

10-

• 5% Error Region

;o ;o ,'o
Freme Number

8O

Figure 16: (a) Range Estimation in the Bracket Region (Dataset F)

Figures 20.a, 20.b and 20.c show the range estimation results in the region correspond-

ing to the Tape. The region surrounding the tape was selected to examine the behavior of

the algorithm at distances far away from the sensor. The changes in disparity of a feature

corresponding to the tape using data set F, data set H and data set Q are shown in Figure

21. The estimation errors are smallest for moderate update intervals. The reason for the

poor performance of the algorithm using the small AT,,, is the disparity between images is

very small. This results in a very low signal to noise ratio in the measurements resulting

from the optical flow algorithm using data set F. At large update intervals, the number of

updates for a given time is small.

The above results indicate that it is possible to estimate range to an accuracy of 5

to 10 percentage. In problems involving large variations of optical flow within the same

image_ the selection of the measurement update interval affects the estimation accuracy.

This problem can be addressed by a variable update Kalman filter where the update rate

is chosen depending on the disparity at a feature location. The main source of error in

z is due to errors in camera calibration and knowledge of the camera co-ordinate system

geometry with respect to the world-axis located on the motion table. The errors can be
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Figure 16: (c) Range Estimation in the Bracket Region (Data.set Q)
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Figure 17: (b) Range Estimation in the Right Pencil Region (Dataset H)
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Figure 18: (c) Range Estimation in the Can Region (Dataset Q)
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Figure 21: Motion in the image plane between images using data sets F, H, and Q

further reduced by camera calibration which will reduce the uncertainty in the location of

the camera co-ordinate system with respect to the motion table.

6 Summary and Future Work

We have presented a recursive method to estimate range to objects using a sequence of im-

ages. The components of our algorithm were based on the characteristics of low-altitude

rotorcraft flight. They are (i) natural scenarios, (ii) curvilinaer motion, (iii) large variation

in the dynamic range of the optical flow, and (iv) the availability of sensor motion param-

eters. These characteristics made it impossible to directly use several algorithms reported

in the computer vision literature. The method was evaluated extensively using real images

in a laboratory setup and produces good range estimates. The performance of the method

can be improved further by camera calibration to remove inaccuracies in the determination

of the image plane. Recently, we have tested the algorithms on several scenarios containing

images from a CH-47 helicopter flight. The algorithm performs very well and the results will

be reported in a forthcoming paper.

We are considering the use of a Kalman filter with variable time intervals between esti-

mate updates to deal with the wide dynamic range of optical flow in an image. Like most

ranging algorithms depending on motion, the performance of the algorithm is poor close to

the FOE. This problem is being addressed by the use of stereo and by integrating stereo and

motion in a Kalman filter formulation. The method needs further evaluation using several

different image sequences to test its robustness.

So far, we have not addressed the real-time implementation issues. We plan to parallelize

our algorithms for implementation on a parallel machine such as Intel's iWARP. Alterna-

tively, we are exploring ways to reduce the number of features per object by supplementing
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feature tracking with knowledge about contiguous objects/surfaces.

Feature detection methods provide a sparse range map in the FOV. They have to be

supplemented by intelligent algorithms such as context dependent scene analysis [39] to fill

the gaps in the range maps. These range maps may have to be further interrogated by an

active system before the range information can be used by the obstacle avoidance system.

The research reported in this paper is part of an on-going effort at NASA Ames to de-

velop technologies for the automation of rotorcraft low altitude flight. The object detection

and range estimation algorithms discussed are quite general and have potential applications

in robotics and autonomous navigation of vehicles. The laboratory and flight image se-

quences together with the optical flow and recursive estimation software can be requested

from NASA/Ames. In addition to these feature-based algorithms, there are parallel efforts

to investigate field-based techniques for the same range estimation applications [19, 20].

7 Appendix

This appendix derives analytical expressions for the discrete equivalent of the continuous

system in equation (25). Assume the linear and angular velocity of the sensor (IT,, win) to be

constant over a small interval of time AT. For a time-invariant matrix F, the state transition

matrix is given by the equation

1FZtS .....
• (t) = exp(Ft) = 1 + Ft + 2_.F12t2 + 3! + (33)

• (t) is evaluated numerically [33]. Because F is a 3 × 3 matrix, we can derive an

expression for _(t) by working in the frequency domain. We have,

¢ = £-1[si - F] -1 (34)

where s is the Laplace transform variable and £-i is the inverse Laplace transform. In the

present case,

f = [Wo(t)ll,ft.aT (35)

We have

[sl - F] = woz s -w.x

--OJ my _ a: 8

Further,

[sI- F]-' = AdjtsI- F]/det[sI- FI

where I is the 3 x 3 identity matrix,

detIsI- F] = s(s 2 + a 2)

(36)

(37)

(38)
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The adjoint matrix is given by the equation

(39)

(40)

Let (1)+j be the ijth element of the 3 x 3 state transition matrix. ¢ij is the Laplace inverse

of the ijth element of the matrix [sl- F]-'. Then, using equations (37), (38) and (40), we
have

2

<_n = £-' s2 q'"* =aw L +cos(aAT) (41)
+.,L)

where
1 - cos(aAT)

a = a2 (42)

Similarly,

where

_n = aw,_', v + bw,, (43)

1_)13 -- a_sz'sz -- b_sl I

(I)21 --" _sz'slt -- _'Os*

_22 = aw2,_ + cos(aAT)

¢I)23 = _syWsz JC _s:

(_)31 = 6t'sz'sz + _'Msy

¢_32 = _sy'sz -- _'sz

_33 = aw_, + cos(aAT)

b= sinCaAT) (44)
a

Assuming the input U(t) = V.(t) to be constant during the interval, the input distribution

matrix F in equation (15) can be computed using the equation

_0 &Tr(o = +(t)G(t)dt (45)

Since G(t) = I,

r(o - +(Odt

Using the values for O(t) from equations (41) and (44) in equation (46), and defining

(46)

AT sin(aAT)

a2 az (47)
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we have

r12 = _s:_s_ 4" a_sz

r13 _ O.dszWa= -- aO.;sl t

r21 -- c_s=t,.jjy - a/.4;sz

2
Fn = av.v + sin(aAT)/a

r23 = o, osltoJm= - o,t.jjz

r31 -- (XOjzbJsz "_"OAMs_

F32 -- 0"4;#yWsz -- OA4;sz

sin(aAT)/ar33 = _m;sz+

(48)
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